skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Zhimin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Although still in its early stages, the production and investigation of 3D magnetic nanostructures signify a major advancement in both fundamental research and practical applications, with immense potential for next‐generation technologies. Here, for the fabrication of the 3D nanostructures, an innovative approach selecting aS= 1/2 4,4′‐dicyano‐2,2′‐biphenylene‐fused tetrazolinyl radical is adopted, chemically stable and thermodynamically robust, allowing thin film processing and growth. Interdigitated gold‐silicon dioxide hybrid surfaces are used as substrates since gold and silicon dioxide are two technologically relevant materials. The ability to: (1) grow radical nanostructures are demonstrated that retain their magnetic properties, (2) adjust their morphology and size, (3) selectively remove nanostructures from specific substrate regions using distilled water, and (4) return substrates to their pristine condition, making them reusable after washing. This research not only aims to produce innovative 3D nanostructures but also strives to improve efficiency and minimize consumption, aligning with the principles of circular economy. This approach is particularly beneficial for expensive materials, such as gold, or patterned hybrid substrates that require complex fabrication techniques. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. We demonstrate a host-guest molecular recognition approach to advance double electron-electron resonance (DEER) distance measurements of spin-labeled proteins. We synthesized an iodoacetamide (IA) derivative of 2,6-diazaadamantane nitroxide (DZD) spin label that could be doubly incorporated into T4 Lysozyme (T4L) by site-directed spin labeling (SDSL) with efficiency up to 50% per cysteine. The rigidity of the fused ring structure and absence of mobile methyl groups increase the spin echo dephasing time (Tm) at temperatures above 80 K. This enables DEER measurements of distances >4 nm in DZD labeled-T4L in glycerol/water at temperatures up to 150 K, with increased sensitivity compared to common spin label such as MTSL. Addition of β-cyclodextrin (β-CD) reduces the rotational correlation time of the label, slightly increases Tm, and most importantly, narrows (and slightly lengthens) the inter-spin distance distributions. The distance distributions are in good agreement with simulated distance distributions obtained by rotamer libraries. These results provide a foundation for developing supramolecular recognition to facilitate long-distance DEER measurements at near physiological temperatures. 
    more » « less